
Using Climate Model Simulations to Constrain Observations

BENJAMIN D. SANTER,a STEPHEN PO-CHEDLEY,a CARL MEARS,b JOHN C. FYFE,c NATHAN GILLETT,c QIANG FU,d

JEFFREY F. PAINTER,a SUSAN SOLOMON,e ANDREA K. STEINER,f FRANK J. WENTZ,b MARK D. ZELINKA,a

AND CHENG-ZHI ZOU
g

aProgram for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California
bRemote Sensing Systems, Santa Rosa, California

cCanadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada,

Victoria, British Columbia, Canada
dDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

eDepartment of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
fWegener Center for Climate and Global Change, University of Graz, Graz, Austria

gCenter for Satellite Applications and Research, NOAA/NESDIS, Camp Springs, Maryland

(Manuscript received 5 October 2020, in final form 29 March 2021)

ABSTRACT: We compare atmospheric temperature changes in satellite data and in model ensembles performed under

phases 5 and 6 of theCoupledModel Intercomparison Project (CMIP5 andCMIP6). In the lower stratosphere, multidecadal

stratospheric cooling during the period of strong ozone depletion is smaller in newer CMIP6 simulations than in CMIP5 or

satellite data. In the troposphere, however, despite forcing and climate sensitivity differences between the two CMIP

ensembles, their ensemble-average global warming over 1979–2019 is very similar. We also examine four properties of

tropical behavior governed by basic physical processes. The first three are ratios between trends in water vapor (WV) and

trends in sea surface temperature (SST), lower-tropospheric temperature (TLT), and mid- to upper-tropospheric tem-

perature (TMT). The fourth property is the ratio between TMT and SST trends. All four ratios are tightly constrained in

CMIP simulations but diverge markedly in observations. Model trend ratios between WV and temperature are closest to

observed ratios when the latter are calculated with datasets exhibiting larger tropical warming of the ocean surface and

troposphere. For the TMT/SST ratio, model–data consistency depends on the combination of observations used to estimate

TMT and SST trends. If model expectations of these four covariance relationships are realistic, our findings reflect either a

systematic low bias in satellite tropospheric temperature trends or an overestimate of the observed atmospheric moistening

signal. It is currently difficult to determine which interpretation is more credible. Nevertheless, our analysis reveals

anomalous covariance behavior in several observational datasets and illustrates the diagnostic power of simultaneously

considering multiple complementary variables.
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1. Introduction

Since publication of the first assessment report of the

Intergovernmental Panel on Climate Change (IPCC) in 1990,

there have been major improvements in our ability to model

the climate system (Randall et al. 2007; Trenberth et al. 2007;

Flato et al. 2013; Hartmann et al. 2013). Thirty years ago, the

climate science community performed single simulations with

a small number of pioneering atmosphere–ocean models.

Today, more complex Earth systemmodels (ESMs) are used to

generate large multimodel and single-model ensembles of

simulations (Kay et al. 2015; Fyfe et al. 2017; Eyring et al. 2019;

Deser et al. 2020). Over the last several decades, standard

benchmark simulations have exposed and in some cases reduced

systematic errors in model representation of many different as-

pects of Earth’s climate (Gates et al. 1999; Randall et al. 2007;

Flato et al. 2013; Sperber et al. 2013; Bellenger et al. 2014).

In tandem with advances in modeling, there have been im-

provements in the forcings used in model simulations of his-

torical climate change (Solomon et al. 2011; Fyfe et al. 2013;

Schmidt et al. 2014; Checa-Garcia et al. 2018). Observations

have also improved with advances in the ability of scientists to

identify and adjust for residual inhomogeneities in the data

(Wentz and Schabel 1998; Mears et al. 2003; Mears and Wentz

2005; Fu and Johanson 2005; Karl et al. 2006, 2015; Po-Chedley

et al. 2015; Hausfather et al. 2017; see section 6). This evolution

of models, forcings, and observations is ongoing.

The Fifth IPCC Assessment Report, published in 2013, re-

lied on CMIP5 simulations performed with roughly four dozen

models (Taylor et al. 2012). The upcoming sixth IPCC assess-

ment will evaluate output from a larger collection of CMIP6

models and an expanded set of experiments (Eyring et al. 2016,

2019). Our interest here is in comparing atmospheric temper-

ature changes in CMIP5, CMIP6, the latest satellite data

(Mears and Wentz 2017; Zou and Wang 2011; Spencer et al.

2017), and a state-of-the-art reanalysis of weather observations
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with a weather forecast model (Simmons et al. 2020). We seek to

determine 1) whether there are important differences between

atmospheric temperature changes in CMIP5 and CMIP6 and 2)

whether models and observations show consistency in well-

understood physical constraints on tropical behavior: the ampli-

fication of tropical warming with increasing height, and the ratios

between trends in tropical water vapor and trends in temperature

at different levels. We show that the combination of these con-

straints provides new information on model–data consistency.

There are several reasons for our focus on atmospheric tem-

perature. First, discrepancies between modeled and observed at-

mospheric temperature changes have received scientific and

political attention for over 20 years (National Research Council

2000; Karl et al. 2006; Thorne et al. 2011; Fu et al. 2011; Po-

Chedley and Fu 2012; U.S. Senate 2015; Santer et al. 2017a,b;

McKitrick andChristy 2020; Po-Chedley et al. 2021).Determining

the causes of these differences remains a priority. Second, esti-

mates of atmospheric temperature from satellites have recently

undergone important revision, primarily due to improved un-

derstanding of the effects of drifts in satellite orbits and instrument

calibration (Po-Chedley et al. 2015; Mears andWentz 2016, 2017;

Zou and Qian 2016; Zou et al. 2018; Spencer et al. 2017).

Reanalysis models and data assimilation systems have also

evolved (Hersbach et al. 2020; Simmons et al. 2020).Our goal is to

reassess model–data consistency in the light of these improve-

ments to observations, models, and external forcings.

The structure of our paper is as follows. Sections 2 and 3

introduce the observational and model data analyzed in our

study. Section 4 discusses basic features of atmospheric tem-

perature time series and trends. Trend comparisons are over

the full satellite era (1979–2019), a period of stratospheric

ozone depletion (1979–2000), and a period of ozone recovery

(2001–2019). Section 5 examines the relative magnitudes of

forced and unforced temperature changes on different time

scales, and considers whether observed changes are consistent

with results from the forced simulations. The statistical meth-

odology in section 5 follows Santer et al. (2011) and is provided

in the online supplemental material (SM) with only minor

modifications. Section 6 focuses on the covariability of differ-

ent aspects of tropical climate change. We examine ratios be-

tween tropical trends in column-integrated water vapor (WV)

and sea surface temperature (SST), WV and the temperature

of the lower troposphere (TLT), WV and the temperature of

the mid- to upper troposphere (TMT), and between TMT and

SST. These four ratios are compared in observations and

multimodel and single-model ensembles. Prospects for using

such covariability information to constrain divergent observa-

tions are considered in section 7. Appendixes A and B provide

information regarding the calculation of synthetic satellite tem-

peratures and the adjustment of tropospheric layer-average

temperature for stratospheric influence.

2. Observational data

a. Satellite temperature data

Since late 1978, NOAA polar-orbiting satellites have mon-

itored the microwave emissions from oxygen molecules using

the Microwave Sounding Unit (MSU) and the Advanced

Microwave Sounding Unit (AMSU; Mears and Wentz 2017;

Spencer et al. 2017; Zou et al. 2018). Microwave emissions are

proportional to the temperature of broad atmospheric layers.

By measuring at different microwave frequencies, MSU and

AMSU provide estimates of temperatures at different heights.

Here, we analyze TLT, TMT, and the temperature of the lower

stratosphere (TLS).

We rely on TLS and TMT datasets produced by Remote

Sensing Systems (RSS; Mears and Wentz 2016), NOAA’s

Center for Satellite Applications and Research (STAR; Zou

and Qian 2016), and the University of Alabama in Huntsville

(UAH; Spencer et al. 2017). Only RSS and UAH supply TLT

measurements. We use the most recent dataset versions: RSS

4.0, STAR 4.1, and UAH 6.0. The University of Washington

(UW) also produces a TMT dataset, but this is available for the

tropics only (Po-Chedley et al. 2015).We did not use UWTMT

data for the present study.

We consider three different versions of the RSS atmospheric

temperature data. As noted in Mears and Wentz (2017), ‘‘a

total of nine MSU instruments cover the period from 1978 to

2005, followed by a series of AMSU instruments that began in

mid-1998 and continue to the present’’ (p. 7695). MSU and

AMSU do not measure at the same microwave frequencies;

different plausible choices can be made in merging their esti-

mated brightness temperatures.

Mears and Wentz (2016) employed three approaches to

merge MSU and AMSU data:

1) MSU and AMSU measurements were used during the

merge period from mid-1998 to 2003.

2) Only AMSU data were used after 1999. MSU data were

excluded after 1999.

3) MSU data were used after 1999. AMSU data were excluded

before 2003.

These approaches are referred to subsequently as ‘‘base-

line,’’ ‘‘AMSU merge,’’ and ‘‘MSU merge,’’ respectively, and

are described in more detail in the SM. In sections 5 and 6, we

address the question of whether these three RSS datasets yield

different statistical inferences regarding the correspondence

between simulated and observed measures of climate change.

All satellite temperature datasets analyzed here are in the

form of monthly means on the same 2.583 2.58 latitude–

longitude grid. Near-global averages of TLS, TMT, and TLT

were calculated over areas of common coverage in the RSS,

UAH, and STAR datasets (82.58N–82.58S for TLS and TMT,

and 82.58N–708S for TLT). At the time this analysis was per-

formed, satellite temperature data for full 12-month years were

available for the 492-month period from January 1979 to

December 2019.

b. SST data

Section 6 considers two ratio statistics involving SST. The

first is R{WV/SST}, the ratio between tropical trends in WV and

SST (Wentz and Schabel 2000; Held and Soden 2006; Mears

et al. 2007; Mears and Wentz 2016). The second is R{TMT/SST},

the ratio of tropical TMT and SST trends (Wentz and Schabel

2000; Santer et al. 2005; Po-Chedley et al. 2015). We seek to
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determine whether simulated and observed values of these

ratio statistics are consistent, and how model–data agreement

is affected by structural uncertainty in observed SST data. This

uncertainty arises from differences in raw data, the methods

used to adjust raw data for known inhomogeneities, treatment

of sea ice, and the decisions made in merging information from

ship-based measurements, buoys, floats, and satellites (Karl

et al. 2006, 2015; Morice et al. 2012; Hausfather et al. 2017).

We quantify structural uncertainty in SST data by calculating

R{WV/SST} and R{TMT/SST} with four commonly used observa-

tional records:

1) Version 2 of the Centennial In Situ Observation-Based

Estimates of the Variability of SST andMarine Meteorological

Variables (COBE; Hirahara et al. 2014).

2) Version 5 of the NOAA Extended Reconstructed SST

dataset (ERSST; Huang et al. 2017).

3) Version 1 of the Hadley Center Sea Ice and SST dataset

(HadISST; Rayner et al. 2003).

4) Version 4 of the Hadley Center SST dataset (HadSST;

Kennedy et al. 2019).

All datasets except HadSST are spatially complete over the

ocean domain of interest (208N–208S).

c. Satellite water vapor data

The satellite WV data used here were produced by RSS and

are from 11 different satellite-based microwave radiometers

(Wentz 2013). The procedures for intercalibrating andmerging

information from these instruments and for estimating uncer-

tainties in satelliteWV trends are described in detail elsewhere

(Mears et al. 2018). The WV retrievals are based on mea-

surements of microwave emissions from the 22-GHz water

vapor absorption line. The distinctive shape of this line pro-

vides robust retrievals. The signal-to-noise ratio (S/N) for de-

tecting moistening in the lower troposphere by a measurement

of water vapor is several times larger than for MSU-based

measurements of air temperature (Wentz and Schabel 2000).

Relative to WV information from radiosondes and early re-

analysis products, the RSSWV dataset was judged by Trenberth

et al. (2005) to provide the most credible estimate of means,

variability, and trends over oceans.

While alternative satellite WV datasets exist, they span

substantially shorter time intervals than the RSS WV data

(Jiang et al. 2019). At the time our analysis was performed,

RSS WV data were available for the 384 months from January

1988 to December 2019. Since our primary interest is in mul-

tidecadal changes in WV, we focus here on the RSS product.

Due to the high emissivity of the land surface, the RSS WV

retrievals are provided over oceans only. We analyze WV

trends spatially averaged over tropical oceans (208N–208S),
where there is well-understood covariability between temper-

ature and atmospheric moisture (Wentz and Schabel 2000;

Held and Soden 2006; Mears et al. 2007; O’Gorman and

Muller 2010).

Because of changes in satellite capabilities, footprint size,

and rain and landmasking, the spatial coverage of the RSSWV

data changes over time. This results in the systematic addition

of grid cells with WV data in the western Pacific and near the

Maritime Continent. To avoid the introduction of trend biases

arising from coverage changes, we imposed a ‘‘fixed coverage’’

mask; that is, our analysis of the satellite WV data was re-

stricted to the subset of grid points with continuous coverage

over the 384-month analysis period. After regridding model

WV data to the observational grid, the same fixed coverage

mask was applied to all model simulations of historical climate

change.

d. Reanalysis data

Reanalyses employ an atmospheric numerical weather

forecast model with no changes over time in the model itself

(Bengtsson and Shukla 1988; Kalnay et al. 1996). They provide

a well-tested framework for blending and constraining assim-

ilated weather information from different sources; each source

is typically characterized by different accuracy and different

temporal and spatial coverage.

The ERA5 product of the European Centre for Medium-

Range Weather Forecasts (ECMWF) recently superseded the

ERA-Interim. ERA5 was generated with a high-resolution

version (;31-km horizontal resolution, 137 vertical levels) of

the ECMWF operational forecast model and a 4D variational

data assimilation system (Hersbach et al. 2020). According to

Simmons et al. (2020), ERA5 exhibited ‘‘a pronounced cold

bias for the years 2000–06’’ (p. 1).

ERA5.1, which spans the affected 2000–06 period, corrects

this error and yields ‘‘analyses with better global-mean tem-

peratures in the stratosphere and uppermost troposphere than

provided by ERA5’’ (Simmons et al. 2020, p. 1). Inclusion of

ERA5.1 results allows us to test whether blending model and

observational information in a state-of-the-art reanalysis frame-

work provides layer-average atmospheric temperature trends

similar to those available from actual RSS, STAR, and UAH

satellite data. We also examine WV and SST1 trends in ERA5.1,

andwe consider if the ‘‘within reanalysis’’ covariance relationships

between tropical WV, SST, TLT, and TMT trends are similar to

those in other observational datasets and in CMIP models.

3. Model output

a. CMIP5 simulations

We used model TLS, TMT, TLT, SST, and WV output from

phase 5 of the Coupled Model Intercomparison Project

(CMIP5) (Taylor et al. 2012). The description of the CMIP5

datasets provided in the next two paragraphs follows Santer

et al. (2017a).

Our focus here is on three different types of CMIP5 nu-

merical experiment: 1) simulations with estimated historical

changes in human and natural external forcings, 2) simulations

with twenty-first century changes in greenhouse gases and

anthropogenic aerosols prescribed according to representative

1 SSTs in ERA5 were prescribed using version 2 of the HadISST

dataset until August 2007, and thereafter with data from the

Operational Sea Surface Temperature and Ice Analysis (OSTIA).

See Table 7 in Hersbach et al. (2020).

1 AUGUST 2021 SANTER ET AL . 6283

Unauthenticated | Downloaded 04/13/22 08:43 PM UTC



concentration pathway 8.52 (RCP8.5;Meinshausen et al. 2011),

and 3) preindustrial control runs with no changes in external

influences on climate.

Most CMIP5 historical simulations end in December 2005.

RCP8.5 simulations were initiated from conditions of the climate

system at the end of the historical run. To avoid truncating

comparisons between modeled and observed climate change

trends in December 2005, we spliced together output from the

historical simulations and the RCP8.5 runs. We refer to these

spliced simulations subsequently as ‘‘extended HIST’’ runs.

In total, we analyzed 123 individual extended HIST realiza-

tions performed with 28 different CMIP5 models. We excluded

models that did not consider the scattering and absorption of

radiation by stratospheric volcanic aerosols (Santer et al. 2013),

and therefore lack short-term lower-stratospheric warming sig-

nals after the eruptions of El Chichón in 1982 and Pinatubo in

1991. Including these models in the calculation of multimodel

average (MMA) temperature changes would bias the MMA

estimate of volcanic TLS signals.

Details of the start dates, end dates, and lengths of the his-

torical integrations and RCP8.5 runs are given in Table S1 in

the online supplemental material. Table S2 provides informa-

tion on the 36 CMIP5 preindustrial control runs used to cal-

culate climate noise estimates. The control integrations allow

us to determine S/N characteristics of atmospheric tempera-

ture changes (see section 5).

b. CMIP6 simulations

We also analyze sea surface temperature and atmospheric

temperature and moisture from model simulations performed

under phase 6 of CMIP. These simulations rely on newer

versions of CMIP5 models, often with more comprehensive

representation of Earth system processes (Eyring et al. 2016),

and with contributions from modeling groups that did not

participate in CMIP5. Efforts were made in CMIP6 to improve

the representation of external forcings with known systematic

errors in CMIP5, such as volcanic and solar forcing in the early

twenty-first century (Solomon et al. 2011; Kopp and Lean 2011;

Ridley et al. 2014; Schmidt et al. 2014; Gillett et al. 2016).

At the time this research was performed, the CMIP6 archive

was still being populated with model simulation output. For

preindustrial control runs, output was available from 30 dif-

ferent models. For the analysis of forced simulations, the

CMIP6 historical runs3 from 22 different models were spliced

with results from scenario integrations.

Multiple Shared Socioeconomic Pathway (SSP) scenarios

were available for splicing (Riahi et al. 2017).We chose the SSP5

scenario here.4 SSP5 most closely approximates the radiative

forcing in the CMIP5 RCP8.5 simulation. The differences in

radiative forcing between the five SSPs are very small over the

satellite era (Riahi et al. 2017), so the choice of scenario is un-

likely to affect our model-versus-data comparisons.

In the case of TMT, TLT, SST, and WV, we analyzed 166

realizations. For reasons discussed in section 3c, the sample

size was smaller for TLS (116 extended HIST realizations

performed with 21 models). Further details of the CMIP6 ex-

tendedHIST and control simulations are provided in Tables S3

and S4, respectively.

c. Large initial condition ensembles

Large initial condition ensembles (LEs) are valuable tools

for separating forced and unforced climate change (Deser et al.

2012; Fyfe et al. 2017; Deser et al. 2020). Individual LE

members are generated with the same model and external

forcings, but are initialized from different conditions of the

climate system. Each LE member provides a unique realiza-

tion of the ‘‘noise’’ of natural internal variability superimposed

on the underlying climate ‘‘signal’’ (the response to the

changes in forcing). Typical LE sizes range from 30 to 100.

We used four different LEs to quantify uncertainties in tem-

perature and WV trends arising from multidecadal internal

variability. Two LEs applied CMIP5 historical forcing until 2005

and CMIP RCP8.5 forcing thereafter. The other two LEs relied

on CMIP6 historical forcing until 2014 and SSP5 forcing from

2015 to 2100. The CMIP5 LEs were performed with version 1 of

the Community Earth System Model (CESM1; Deser et al.

2012) and with version 2 of the Canadian Earth System Model

(CanESM2; Fyfe et al. 2017; Swart et al. 2018). The CESM1 and

CanESM2 LEs consist of 40 and 50 members, respectively. The

two 50-member CMIP6 LEs relied on version 5 of CanESM

(CanESM5; Swart et al. 2019; Fyfe et al. 2021) and on version 6 of

theModel for InterdisciplinaryResearch on Climate (MIROC6;

Tatebe et al. 2019). All four LEs used different strategies for

initialization of the individual ensemble members.5

The CanESM5 LE exhibits anomalous aperiodic 1–2-month

lower-stratospheric warming events in certain ensemble mem-

bers, an issue that is actively under investigation. These warming

events are sufficiently large to influence decadal-time scale TLS

trends but have minimal impact on decadal variability in tro-

pospheric temperature (or on the regression-based removal of

stratospheric influence on TMT; see appendix B). We therefore

excluded the CanESM5 LE from the multimodel analysis of

CMIP6 TLS trends, but used CanESM5 TLS data to remove

stratospheric influence from CanESM5 TMT data, and included

CanESM5 LE results in the multimodel analysis of TMT, TLT,

WV, and SST.

4. Temperature time series and trends

a. Lower stratosphere

Figure 1a shows time series of near-global averages of TLS.

The lower stratosphere cools over the full satellite era in all

2 RCP8.5 has radiative forcing of approximately 8.5Wm22 in

2100, eventually stabilizing at roughly 12Wm22.
3 The CMIP6 historical runs typically end in December 2014.
4 In some publications this scenario is referred to as SSP5–8.5

because it reaches radiative forcing of 8.5Wm22 by 2100. We

adopt the SSP5 nomenclature of Riahi et al. (2017) here.

5 Differences include the selected starting year for the simula-

tion, the strategy for perturbing initial conditions, and whether

perturbations were applied to the atmosphere only or to the at-

mosphere and the ocean.
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observational datasets and model extended HIST simulations.

The main cause of this cooling is human-induced depletion

of stratospheric ozone, with a smaller contribution from an-

thropogenic increases in atmospheric CO2 (Solomon 1999;

Ramaswamy et al. 2006; Thompson et al. 2012; Aquila et al.

2016; Maycock et al. 2018; Bandoro et al. 2018). Satellite-era

decreases in TLS are punctuated by large episodic warming

signals after the major eruptions of El Chichón in 1982 and

Pinatubo in 1991. Warming arises from absorption of incoming

solar radiation and outgoing longwave radiation by strato-

spheric volcanic aerosols (Robock 2000; Shine et al. 2003).

The CMIP6 multimodel average has an unrealistically small

TLS signal after El Chichón (Figs. 1a and 2). Based on the

MMA root-mean-square (RMS) errors between observed and

simulated volcanic TLS signals, the TLS response to El Chichón
is better captured inCMIP5 (Figs. 3a,c). For Pinatubo, theMMA

RMS error is smaller in CMIP6 (Figs. 3b,d). These CMIP5-

versus-CMIP6 differences are significant at the 5% level for the

El Chichón signal, but not for the Pinatubo signal (see the

online SM).

Volcanic signal differences in CMIP5 and CMIP6 arise from

multiple factors. These include differences in the type and time

history of information used for prescribing historical changes

in volcanic aerosol loadings, the aerosol optical properties, and

the implementation of these properties in calculating volcanic

radiative forcing (Thomason et al. 2018). Rather than pre-

scribing volcanic aerosol, at least one CMIP6 modeling group

calculated volcanic aerosol loadings based onobserved estimates

of volcanically produced SO2 (Mills et al. 2016; Danabasoglu

et al. 2020). Separating and quantifying the impact of these

different factors on volcanic temperature signals requires sys-

tematic numerical experimentation (Rieger et al. 2020; Fyfe

et al. 2021).

Recent studies suggest that the Montreal Protocol led to a

partial recovery of lower-stratospheric ozone and TLS in the

early twenty-first century (Solomon et al. 2016, 2017; Philipona

et al. 2018; Petropavlovskikh et al. 2019; Banerjee et al. 2020).

All model and observational TLS datasets analyzed here ex-

hibit behavior consistent with ozone recovery: pronounced

global-mean cooling of the lower stratosphere over the ozone

depletion portion of the satellite record, defined here as the

period from 1979 to 2000, followed by weaker cooling or near-

zero trends over the period of ozone recovery from 2001 to

2019 (Solomon et al. 2017; Philipona et al. 2018; Steiner et al.

2020; Mitchell et al. 2020). No individual CMIP5 or CMIP6

realization has larger lower-stratospheric cooling in the ozone

recovery period than in the ozone depletion period (Fig. 4).

This underscores the fact that the nonlinear behavior of TLS

over the satellite era is dominated by the response to ozone

forcing, not by multidecadal internal variability (Solomon

et al. 2017).

The multimodel average TLS trends for the ozone depletion

and recovery periods are (respectively) 20.368 and 20.078C
decade21 in CMIP5 and 20.268 and 20.068C decade21 in

CMIP6. During the ozone depletion period, the larger multi-

model average lower-stratospheric cooling in the older CMIP5

simulations is in better accord with satellite TLS trends, which

range from 20.428 to 20.498C decade21. This is partly due to

the larger (negative) ozone-induced stratospheric radiative

forcing in CMIP5 (Checa-Garcia et al. 2018).

Other factors may also contribute to reduced lower-

stratospheric cooling in CMIP6 over 1979–2000. These fac-

tors include CMIP5-versus-CMIP6 differences in forcing from

tropospheric ozone (Checa-Garcia et al. 2018), volcanoes (see

above) and stratospheric water vapor (Keeble et al. 2021),

possible differences in the forced response of tropical upwell-

ing (Ball et al. 2020), and whether ozone in models was

FIG. 1. Time series of monthly mean near-global averages of the

temperature of (a) the lower stratosphere (TLS), (b) the mid- to

upper troposphere (TMT), and (c) the lower troposphere (TLT).

For TLS and TMT, observations are the average of the RSS

‘‘baseline’’, STAR, and UAH satellite datasets and the ERA5.1

reanalysis. Since STAR does not produce a TLT dataset, the ob-

servational average for TLT was calculated with RSS ‘‘baseline’’,

UAH, and ERA5.1 only. CMIP5 synthetic satellite temperatures

were computed from 123 realizations of historical climate change

(‘‘extended HIST’’) performed with 28 models. For CMIP6, 116

extendedHIST realizations were used for TLS and 166 realizations

for TMT and TLT (performed with 21 and 22 models, respec-

tively). All temperature changes are defined as anomalies relative

to climatological monthly means over 1979–2019. TMT is adjusted

for the contribution it receives from stratospheric cooling (see

appendix B). Calculation of the multimodel average (MMA) in-

volves first averaging over realizations of an individual model, then

averaging over models.
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prescribed or calculated with interactive ozone chemistry (Lin

and Ming 2021).

The zonal-mean structure of TLS trends may provide some

diagnostic clues. Over the ozone depletion period, the smaller

global-mean lower-stratospheric cooling in the CMIP6 MMA

(relative to the CMIP5 MMA) arises primarily from the tropics

(Fig. 5a). During the ozone recovery period, the multimodel

average TLS trends from the two CMIP phases are more similar

in their zonal-mean structure, except at high latitudes in the SH

(Fig. 5b).More detailed analyses andmore systematic numerical

experimentation will be required to quantify the relative con-

tributions of forcing, response, chemistry, and dynamics to dif-

ferences between CMIP5 and CMIP6 TLS trends (Solomon

et al. 2017; Checa-Garcia et al. 2018; Fyfe et al. 2021).

FIG. 2. Time series of monthly mean anomalies of the temperature of the lower stratosphere (TLS) in CMIP6

extended HIST simulations. Results are for 21 individual CMIP6 models (in gray) and for the RSS ‘‘baseline’’

satellite data (in red). (bottom right) The CMIP6 multimodel average. All anomalies are spatially averaged over

82.58N–82.58S and are defined relative to climatological monthly means over 1979–2019. The number of extended

HIST realizations is indicated in parentheses. Vertical lines denote the times of maximum lower-stratospheric

warming in the RSS ‘‘baseline’’ data after the eruptions of El Chichón and Pinatubo.
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b. Troposphere

Multidecadal warming of the global troposphere is a ubiq-

uitous feature of the observations and all CMIP5 and CMIP6

forced simulations (Figs. 1b,c). Over the full satellite era, the

MMA tropospheric warming rate is very similar in CMIP5 and

CMIP6 (0.288 and 0.298C decade21, respectively). This holds

both for TMT and TLT (Fig. 6a). The similarity of the CMIP5

andCMIP6 results is noteworthy given that CMIP6 has a larger

number of models with higher transient climate response

(TCR) and higher effective climate sensitivity (ECS) (Zelinka

et al. 2020; Flynn and Mauritsen 2020; Meehl et al. 2020). An

independent analysis of surface temperature supports our

finding: despite higher average TCR and ECS in CMIP6, the

MMA historical surface warming rate is comparable in older

and newer generations of CMIP models, possibly due to a

larger response to anthropogenic aerosol forcing in CMIP6

(Flynn and Mauritsen 2020; Fyfe et al. 2021).

In the four single-model large ensembles, the spread of TMT

and TLT trends arising from internal variability is substantial,

spanning 31%–47% of the trend spread in the CMIP5 and

CMIP6 multimodel ensembles (Fig. 6a).6 These results are

consistent with other recent comparisons of LE spread to

FIG. 3. Root-mean-square (RMS) differences between simulated and observed volcanic signals in lower-

stratospheric temperature in (a),(b) CMIP5 and (c),(d) CMIP6 models. RMS differences were calculated for

24-month periods after (a),(c) the 1982 eruption of El Chichón and (b),(d) the 1991 Pinatubo eruption. The obser-

vational target is the RSS ‘‘baseline’’ TLS time series, spatially averaged over 82.58N–82.58S. Blue dots denote RMS

values from individual realizations of the CMIP5 and CMIP6 extended HIST runs. Horizontal bars are average RMS

differences for individual models. The dashed vertical lines are the multimodel average RMS differences, calculated

by first averaging RMS values over a model’s individual realizations, and then averaging over models.

6 This percentage represents (sLE/sCMIP)3 100, where sLE is the

standard deviation of the sampling distribution of trends in an in-

dividual CMIP5 LE or CMIP6 LE and sCMIP is the standard de-

viation of the sampling distribution of ensemble-mean trends in the

corresponding CMIP5 or CMIP6 multimodel ensemble contain-

ing the LE.
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multimodel ensemble spread (Mitchell et al. 2020; Po-Chedley

et al. 2021).

Observed trends in global-mean tropospheric temperature

range from 0.138 to 0.198C decade21 for TMT and from 0.138 to
0.218C decade21 for TLT (Fig. 6a). For TLT, over 84% of the

total number of CMIP5 and CMIP6 extended HIST realiza-

tions analyzed here have trends exceeding the largest obser-

vational result; the corresponding figure is 91% for corrected

TMT trends. Related work suggests that the smaller observed

warming is partly due to an unusual manifestation of natural

internal variability. Model realizations with phasing and am-

plitude of internal variability similar to the observations yield

global-mean and tropical tropospheric temperature trends that

are closer to satellite results (Po-Chedley et al. 2021).

In all individual extended HIST realizations, the ratio

R{TMT/TLT} between global-mean trends in TMT and TLT is

close to unity (Fig. 6b). This narrow range occurs despite dif-

ferences in external forcings, ECS, and internal variability in

the multimodel and single-model ensembles, and despite dif-

ferences in the patterns of warming in TMT and TLT (Santer

et al. 2019). The 5th–95th percentile ranges of the CMIP5

and CMIP6 R{TMT/TLT} sampling distributions encompass the

UAH-derived ratio, but all other observational datasets have

R{TMT/TLT} values significantly less than one. The decisions

made byRSS inmergingMSU andAMSUhave limited impact

on TLT trends and substantial impact on TMT trends (Fig. 6a),

thereby introducing large spread in the three RSS-derived

R{TMT/TLT} values. The RSS ‘‘MSU merge’’ dataset, which has

the largest global-mean TMT trend, is closest of the three to

the model expectations of R{TMT/TLT} (Fig. 6b).

It is now recognized that there were systematic deficiencies

in the early twenty-first century solar and volcanic forcing used

in CMIP5 (Kopp and Lean 2011; Solomon et al. 2011; Flato

et al. 2013; Schmidt et al. 2014). Efforts were made to improve

representation of both forcings in CMIP6 (Eyring et al. 2016;

Gillett et al. 2016; Thomason et al. 2018; Rieger et al. 2020).We

find, however, that CMIP5 and CMIP6 multimodel average

trends in TMT are virtually identical over 2001–19 (Fig. 7).

Since other external forcings also changed between these two

generations of models (Checa-Garcia et al. 2018; Fasullo et al.

2021, manuscript submitted to Nat. Climate Change), isolating

the climate impact of improvements in volcanic or solar forcing

is challenging. Such diagnosis will benefit from simulations in

which the same physical climate model is run with different

versions of individual forcings (Fyfe et al. 2021; Fasullo et al.

2021, manuscript submitted to Nat. Climate Change).

Tropospheric trends in ERA5.1 exhibit several notable dif-

ferences relative to the satellite datasets (Hersbach et al. 2020).

Reanalysis TMT trends are smaller than in all satellite datasets

over 1979–2000 and larger than in all satellite datasets over

2001–19 (Fig. 7). Over the 2002–18 period covered by Global

Positioning Satellite (GPS) radio occultation measurements,

both GPS data and radiosondes yield trends in the middle

troposphere that are in reasonable accord with the ERA5.1

results (Steiner et al. 2020).

While the satellite data analyzed here are derived from

measurements of microwave emissions alone, ERA5.1 uses a

state-of-the-art 4D-variational data assimilation system to con-

strain a weather forecast model with a wide range of multivari-

able measurements from satellites, radiosondes, and surface

stations (Hersbach et al. 2020; Simmons et al. 2020). Detailed

observing system experiments can help to understand the impact

of different features of the assimilation system and assimilated

data (Bormann et al. 2019). Such studies will be useful in rec-

onciling the trend differences found here and elsewhere (Steiner

et al. 2020) between microwave sounders and ERA5.1.

5. Signal-to-noise properties and model–data signal
differences

In previous statistical comparisons of modeled and observed

temperature changes, discussion often focused on the appro-

priateness of different comparison periods (Santer et al. 2011).

This can be uninformative if attention is restricted to a short

segment of the overall temperature record. Here we analyze

atmospheric temperature changes over all NL maximally

overlapping L-year periods (see the SM). We consider four

different values ofL: 10, 20, 30, and 40 years. For each value of

L, sampling variability is reduced by averaging over all NL

individual measures of temperature change. As we show

FIG. 4. Least squares linear trends in near-global average lower-

stratospheric temperature over ozone depletion and ozone recov-

ery periods (1979–2000 and 2001–19, respectively). Model results

are from 123 and 116 extended HIST simulations performed with

28 different CMIP5 and 21 different CMIP6 models, respectively.

CMIP5 trends include results from the 40-member CESM1 and

50-member CanESM2 large ensembles (LEs). CMIP6 trends in-

corporate the 50-member MIROC6 LE. Observed estimates of

TLS trends rely on satellite data (RSS, STAR, and UAH) and the

ERA5.1 reanalysis. Three different versions of the RSS data are

shown. The 1:1 line (with trends of equal size over the ozone de-

pletion and ozone recovery periods) is marked in purple. The

shaded ellipses are the 2s confidence intervals for each of the three

LEs. For information on spatial averaging and calculation of

multimodel averages, refer to Fig. 1.
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below, examining behavior averaged over a particular time

scale can have diagnostic value.

Figure 8 shows two different types of statistic: trends and

regression coefficients. Results are from individual observa-

tional datasets and from distributions of statistics in forced and

unforced simulations.

Consider the trend results first. Rows 1–3 of Fig. 8 display

trends in TLS, TMT, and TLT, respectively, for our four se-

lected values of the time scale L. With increasing L, the am-

plitude of internally generated trends decreases. As a result,

the standard deviations of the forced and unforced trend dis-

tributions decrease. For all three atmospheric layers, forced

and unforced trend distributions are completely separated at

L5 40 years (Figs. 8d,h,l). This is a simple visual illustration of

the dependence of signal and noise on time scale, and of the

difficulty in their separation on shorter, noisier time scales of 1–

2 decades (Santer et al. 2011).

Despite the evolution in model complexity and resolution

between CMIP5 and CMIP6, the sampling distributions of

unforced atmospheric temperature trends are remarkably similar

in the two generations of coupled models. The same is true for

the sampling distributions of forced trends on 10- and 20-year

time scales. On longer 30- and 40-year time scales, however,

small differences are apparent in the distributions of forced

tropospheric temperature trends in CMIP5 and CMIP6. These

may arise because CMIP5 and CMIP6 do not have identical

multidecadal evolution of certain external forcings (Checa-

Garcia et al. 2018; Fyfe et al. 2021).

Figure 8 also provides information on the consistency be-

tween global-mean temperature trends in observations and the

extended HIST simulations. On shorter 10- and 20-year time

scales, all observed TLS, TMT, and TLT trends are contained

within the respective CMIP5 and CMIP6 distributions of forced

trends. The same is true for observed TLS trends on longer 30-

and 40-year time scales (Figs. 8c,d). For TMT and TLT, how-

ever, only observed datasets with larger tropospheric warming

rates are within themodel 30- and 40-year distributions of forced

trends. The UAH-inferred warming on these time scales is in-

variably smaller than model expectations (Figs. 8g,h,k,l).

Amplification of warming with increasing height is a well-

known and well-understood property of the tropical atmo-

sphere (Stone and Carlson 1979; Santer et al. 2005; Held and

Soden 2006). Figures 8m–p display one measure of tropical

amplification behavior—the regression coefficient b{TMT:TLT}

between time series of tropical ocean averages of TMT and

TLT. All model and observational values of b{TMT:TLT} are

greater than 1, indicating that temperature changes in the mid-

to upper troposphere exceed those in the lower troposphere.

The means and widths of the CMIP5 and CMIP6 sampling

distributions of b{TMT:TLT} are relatively insensitive to increases

in L, and show substantial overlap for the forced and unforced

runs. The model results imply that b{TMT:TLT} is both invariant to

time scale and insensitive to forcing, and that it may impose a

robust, physically based constraint on observations (Santer et al.

2005; Held and Soden 2006).

Observational values of b{TMT:TLT} show a number of in-

teresting features. First, the ERA5.1 and RSS ‘‘MSU merge’’

results are well within the range of model expectations on all

four time scales considered here. In terms of this tropical am-

plification metric, therefore, there is no fundamental discrep-

ancy between simulations and all observations.

Second, as in the model simulations, b{TMT:TLT} is invariant

to time scale for UAH, ERA5.1, and the RSS ‘‘MSU merge’’

case.While the threeRSS sensitivity tests have almost identical

FIG. 5. Zonal-mean trends in monthly mean lower-stratospheric temperature over the (a) ozone depletion and

(b) ozone recovery periods. For information regarding the numbers of CMIP5 and CMIP6 models and extended

HIST realizations, calculation of multimodel averages, spatial averaging, and observational data, refer to Fig. 1.
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b{TMT:TLT} values for L5 10 years (Fig. 8m), the RSS baseline

and ‘‘AMSU correct’’ datasets yield regression coefficients

that decrease in size as L increases, and are generally outside

the range of model results for 30- and 40-year time scales (Figs.

8o–p). On these longer time scales, the maximally overlapping

L-year windows always sample the 1998–2003 transition be-

tween earlier and more advanced microwave sounders, and

thus are more likely to reflect the impact of different merging

choices on amplification behavior (see section 2a).

Third, theUAH b{TMT:TLT} value is;1.1 on all four time scales

and is smaller than almost allmodel results. The anomalousUAH

value is due to a change in the method used by the UAH group

to estimate TLT (Spencer et al. 2017). The impact of this

change7 was to increase the height of the effective weighting

function for TLT, thus decreasing the vertical separation be-

tween the TLT and corrected TMT weighting functions. This

FIG. 6. (a) Scatterplot of linear trends in near global-mean lower-tropospheric temperature

(TLT) and mid- to upper-tropospheric temperature (TMT) and (b) histograms of the TMT/

TLT trend ratio. All trends are over 1979–2019. TMT is corrected for lower-stratospheric

cooling. The multimodel averages include information from the 50- and 40-member CanESM2

and CESM1 LEs (for CMIP5) and from the 50-member CanESM5 and MIROC6 LEs (for

CMIP6). The shaded ellipses in (a) are the 2s confidence intervals for each LE. Because TLT

is not produced by STAR, the STARTMT trend is plotted as a horizontal line in (a). Selected

isopleths of equal values of the TMT/TLT trend ratio are denoted by dashed gray lines in (a).

For further details of CMIP5 and CMIP6 realizations and models, calculation of multimodel

averages, spatial averaging, observational data sources, and fits to histograms, refer to caption

of Fig. 1 and the online supplemental material (SM).

7 The change involved transitioning from a multiangle to a

multichannel method for calculating TLT. Spencer et al. (2017)

regard the latter as a ‘‘more robust method of (T)LT calcula-

tion’’ (p. 121).
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leads to a smaller amplification ratio. To maintain continuity

with previous tropical amplification studies (Santer et al.

2017b) and to increase the amplification signal, the model,

RSS, and ERA5.1 results shown here do not use the new UAH

approach for calculating TLT.

6. Covariability of different aspects of tropical climate
change

Properties of the climate system that are controlled by well-

understood physical mechanisms and are tightly constrained in

model simulations may be useful for reducing large uncer-

tainties in observed temperature trends (Santer et al. 2005).

We consider four such properties here. The first three prop-

erties are ratios between tropical WV trends and trends in

tropical SST, TLT, and corrected TMT.8 We refer to these

ratios as R{WV/SST}, R{WV/TLT}, and R{WV/TMT}, respectively.

The relationship between temperature and saturation vapor

pressure changes is governed by the Clausius–Clapeyron (C-C)

equation (Iribarne and Godson 1981). If relative humidity re-

mains approximately constant as temperature increases, C-C

predicts the increase in columnar content of WV (Wentz

and Schabel 2000; Held and Soden 2006; Mears et al. 2007;

O’Gorman and Muller 2010).

The fourth property we examine, the trend ratio R{TMT/SST},

is a measure of the amplification of tropical SST changes in the

tropical troposphere. Its behavior is governed by moist ther-

modynamics (Stone and Carlson 1979; Held and Soden 2006).

The ratio R{TMT/SST} provides information that differs from

that of b{TMT:TLT}, the regression-based amplification metric

considered in section 5.9

In a climate model, these four ratios are internally and

physically consistent. The observed covariability of tropical

WV, tropospheric temperature, and SST should also exhibit

internal and physical consistency. As we show below, however,

observedR{WV/SST},R{WV/TLT},R{WV/TMT}, andR{TMT/SST} values

can be inconsistent for certain combinations of observed data-

sets, and may depart noticeably from model expectations.

Such departures can have at least three explanations. First,

WV, tropospheric temperature, and SST are measured inde-

pendently by different instruments on different satellites and/

or measurement platforms. Each variable has different mea-

surement accuracy and errors. These measurement differences

can affect the estimated covariability between multidecadal

trends in WV, tropospheric temperature, and SST.

Second, the tropospheric temperature and SST datasets

analyzed here were generated by multiple research groups. In

the case of TMT and TLT, each research group uses different

procedures to adjust for drifts in satellite orbits and instrument

calibration, to merge measurements from multiple satellites,

and to merge brightness temperatures estimated from earlier

andmore recent types of microwave sounders. For SST, groups

use different methods to blend information from ships, buoys,

drifting floats, and satellites, to adjust for changes over time in

how SST measurements were made, and to infill SSTs in data-

sparse regions. The decisions made in adjusting tropospheric

temperature and SST for these known nonclimatic influences

can affect trends (Karl et al. 2006, 2015; Hausfather et al. 2017;

Mears et al. 2011; Mears and Wentz 2016, 2017; Zou and Qian

2016; Zou et al. 2018; Spencer et al. 2017; Po-Chedley et al.

2015), and can therefore influence the estimated covariability

between real-world temperature andWV changes (or between

observed trends in SST and TMT). Trends in satellite WV data

FIG. 7. As in Fig. 4, but for linear trends in global averagemid- to

upper-tropospheric temperature (TMT) over 1979–2000 (x axis)

and over 2001–19 (y axis). TMT is corrected for the influence of

lower-stratospheric cooling. While Fig. 4 excluded TLS results

from the 50-member CanESM5 LE because of anomalous TLS

variability, TMT trends from the CanESM5 LE are minimally af-

fected by this anomalous variability and are included here. The 1:1

line (with TMT trends of equal size over the two periods) is marked

in purple. Simulated TMT trends are larger in the second analysis

period in approximately 90% of the realizations. In satellite data,

trends in the two periods are of roughly equivalent size.

8 Because satellite WV data are available over ocean only, we

computed R{WV/TLT} and R{WV/TMT} using ‘‘ocean only’’ TLT and

TMT trends. Horizontal temperature gradients are weak in the

tropical free troposphere, so whether we use TLT and TMT trends

calculated over ocean only or over land and ocean has minimal

impact on our results. To be consistent in terms of the domain

analyzed, the TMT trends in R{TMT/SST} also rely on data averaged

over tropical oceans only.

9 The term b{TMT:TLT} was useful for examining whether the TMT

and TLT time series produced by an individual research group

yielded internally consistent estimates of amplification behavior.

Notably, b{TMT:TLT} used TMT and TLT information from the same

microwave sensors flown on the same satellites; in contrast, observed

values of R{TMT/SST} provide information on the physical consistency

between multidecadal trends in SST and TMT measurements that

are processed by different research groups, and that are obtained

using different types of measurement platforms.
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are also sensitive to dataset construction choices (Mears et al.

2018), but we currently have uncertainty estimates from RSS

only.10

Third, models may have incomplete or inaccurate repre-

sentation of the basic physics driving observed tropical cova-

riability relationships on multidecadal time scales. This seems

unlikely (Held and Soden 2006), particularly given the fact

that on interannual time scales, observed tropical covariability

relationships between surface and tropospheric temperature

(Santer et al. 2005) and between temperature and WV (Mears

et al. 2007) are well captured by models (see section 7).

Figure 9 shows scatterplots of the individual trend compo-

nents of the four ratio statistics. For each statistic, model results

are tightly constrained in the CMIP5 and CMIP6 multimodel

ensembles. At least 96% of the variance in simulated WV

trends (plotted on the y axis in Figs. 9a–c) and in simulated

TMT trends (plotted on the y axis of Fig. 9d) is explained by

simulated trends in the independent (x axis) variable. This

indicates that the four covariance relationships of interest here

are relatively insensitive to model differences in the applied

historical forcings, the temperature andWV responses to these

forcings, and the properties of simulated multidecadal internal

variability. A related inference is that even though most of the

mass of atmospheric water vapor resides in the lower tropo-

sphere, simulated tropical SST, TLT, and TMT trends impose

FIG. 8. Trends and regression coefficients in CMIP5, CMIP6, and observations. Maximally overlapping L-year trends were calculated

from time series of monthly-mean, near-global spatial averages of (a)–(d) TLS, (e)–(h) TMT, and (i)–(l) TLT. (m)–(p) The regression

coefficient b{TMT:TLT}, a measure of amplification of warming in the tropical troposphere, was computed with maximally overlapping L-

year time series ofmonthlymeanTMTandTLT, spatially averaged over ocean areas between 208Nand 208S. The four selected time scales

shown here are (left to right) 10, 20, 30, and 40 years, respectively. Histograms of theseL-year trends and regression coefficients are shown

for CMIP5 and CMIP6 extended HIST simulations and for preindustrial control runs. Histograms are weighted to account for model

differences in the number of extended HIST simulations or in control run length. For each histogram, results are normalized by the total

number of trend or regression coefficient samples. Fits to themodel trend and b{TMT:TLT} distributions were performedwith kernel density

estimation (see the SM). The vertical lines for the observed trends and regression coefficients are the averages across the maximally

overlapping L-year analysis periods. For trends in TMT, the RSS ‘‘MSU merge’’ and STAR results are almost identical.

10We do not use the reanalysis-derived WV trend in estimating

structural uncertainties in observedWV trends. Other research has

found possible problems with WV trends inferred from reanalysis

products (Bengtsson et al. 2004; Wang et al. 2020).
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similar constraints on simulated tropical WV trends—that is,

there is no evidence that (on multidecadal time scales) SST or

TLT explains noticeably more of the WV variance than TMT.

The regression fits to the CMIP5 and CMIP6 trends are

8.5% and 8.7% 8C21 forWV and SST, 6.3% and 6.4% 8C21 for

WV and TLT, and 5.3% and 5.5% 8C21 for WV and TMT

(Figs. 9a–c, respectively). The decrease in regression slope in

the progression from Figs. 9a to 9c reflects the fact that tropical

temperature changes closely follow a moist adiabatic lapse

rate (Stone and Carlson 1979). As the magnitude of warming

amplifies with increasing height, the slope of the regression

between temperature trends and moisture trends decreases.

The regression slope for simulated tropical SST and TMT

trends (1.6 for both CMIP5 and CMIP6; see Fig. 9d) is also

consistent with moist adiabatic lapse rate (MALR) expecta-

tions (Fu et al. 2004).

Unlike the model covariance relationships in Fig. 9, all four

sets of observed covariance relationships show substantial

spread. The tight clustering of model expectations and the large

observational uncertainty are clearer if we directly compare

FIG. 9. Scatterplot of tropical trends in (a) WV and SST, (b) WV and TLT, (c) WV and corrected TMT, and

(d) corrected TMT and SST. Trends are over 1988–2019, the period of availability of observedWVdata from seven

different microwave radiometers (Mears et al. 2018), and were calculated with WV, TLT, TMT, and SST data

averaged over tropical oceans (208N–208S). For ERA5.1, the location of the purple pentagonal symbols is based on

reanalysis data only (i.e., the ERA5.1 WV trend in (a) is plotted against the ERA5.1 SST trend). All other ob-

servational symbols provide information on the joint variability between trends in different climate variables es-

timated by different research groups. In (a), for example, the satelliteWV trend (which is available fromRSS only)

is plotted against observed SST trends from ERSST, HadISST, COBE, and HadSST. In (b) and (c), the RSS WV

trend is plotted against TLT and TMT trends from five and six different satellite datasets, respectively. In (d), there

are four different observed SST trends and five different satellite TMT trends, yielding 43 5 combinations of SST

and TMT trends (plus the symbol denoting the relationship between the ERA5.1 TMT and SST trends). The x axis

position of observational symbols in (d) reflects the observed SST trend; the y axis position depends on the observed

TMT trend. The regression fits and slopes were estimated with orthogonal distance regression and are given

separately for CMIP5 and CMIP6 results (see the SM). The ERSST and HadSST trends are almost identical; this is

why the solid blue diamond and red star symbols overlap in (a) and (d).
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trend ratios (Fig. 10).11 This comparison reveals that observed

SST and tropospheric temperature datasets with the largest

tropical warming over 1988–2019 haveR{WV/SST},R{WV/TLT}, and

R{WV/TMT} ratios closest to the model results (Figs. 10a–c).

For all three ratios involving WV trends, there is minimal

overlap between simulations and observations; observed ra-

tios generally exceed model expectations. ForR{WV/SST}, only

the COBE SST trend leads to a result consistent with model

expectations (Fig. 10a). For both R{WV/TLT} and R{WV/TMT},

observed trend ratios are larger than almost all of the 289

model results (Figs. 10b,c).12 The agreement between model

FIG. 10. Histograms of the ratios between themodel trends plotted in each of the four panels of Fig. 9. Results are

shown for (a) R{WV/SST}, (b) R{WV/TLT}, (c) R{WV/TMT}, and (d) R{TMT/SST}. Observational trend ratios in (a)–(c) are

plotted as vertical lines. In (d), trends from each of the five satellite TMT datasets analyzed here (the three RSS

versions, STAR, andUAH) can be pairedwith four different observed SST trends (fromERSST,HadISST, COBE,

and HadSST), yielding 5 3 4 different observed values of R{TMT/SST}, plus one value for the ratio between the

ERA5.1 TMT and SST trends (see Fig. 9 caption).ObservedR{TMT/SST} values in (d) are plotted in six rows. There is

one row for each of the five satellite TMT datasets and one row for the reanalysis. The vertical spacing and y axis

location of rows is nominal; the vertical ordering of rows reflects the size of the observed tropical TMT trend over

1988–2019. The largest TMT trend (in the STARdataset) has the largest y axis offset in (d). For details regarding fits

to the model histograms and histogram weighting, refer to the SM. Because the ERSST and HadSST trends are

almost identical, the ERSST-based trend ratios in (a) and (d) have been offset vertically. Other observational

results with similar ratios have also been offset for the sake of clarity.

11 The lowest and highest observational values for R{WV/SST},

R{WV/TLT},R{WV/TMT}, andR{TMT/SST} vary by factors of 1.6, 1.7, 1.8,

and 2.9, respectively. The larger range forR{TMT/SST} arises because

there is appreciable observational uncertainty in both the numer-

ator and denominator of the ratio. In the three ratios involving

WV, the structural uncertainty of observed trends can be estimated

in the denominator only.

12 For each ratio, there are 123 values for CMIP5 and 166 for

CMIP6. For R{WV/TLT} and R{WV/TMT}, only 4 and 3 of the 289 ex-

tended HIST realizations (respectively) have scaling ratios ex-

ceeding the smallest observed value.
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and observed R{WV/SST} values is closer, but depends on the

selected combination of observed TMT and SST datasets

(Fig. 10d).

We calculated Z-scores to summarize and synthesize the

information in Fig. 10. For each observed ratio in Fig. 10, the

Z-score is simply the difference between the observed result

and the mean of the CMIP5 or CMIP6 multimodel average

ratio, normalized by the CMIP5 or CMIP6 standard deviation

of the sampling distribution of the ratio in question. The Z-

scores in Fig. 11a are measures of the consistency between the

simulated and observed values of R{WV/TLT}, R{WV/TMT}, and

R{TMT/SST}. For the latter ratio, results are averaged over the

individual Z-scores arising from structural uncertainty in ob-

served SST trends. The Z-scores in Fig. 11b involve R{WV/SST}

and R{TMT/SST}, with R{TMT/SST} results averaged over the in-

dividualZ-scores arising from structural uncertainty in satellite

tropospheric temperature trends. The reanalysis results for all

four ratios are shown in Fig. 11c.13

Under the assumption that the model-generated distribu-

tions of the four ratios are realistic representations of the

true (but uncertain) real-world covariance relationships, the

Z-scores allow us to make certain inferences about the likeli-

hood that individual observed SST and tropospheric temper-

ature datasets are consistent with model expectations and with

other observations. In Fig. 11a, for example, STAR and RSS

‘‘MSU merge’’—the datasets with the largest observed tropo-

spheric warming trends—are closest to the model expectations

of WV/tropospheric temperature trend ratios, and therefore

have the smallest Z-scores for R{WV/TLT} and R{WV/TMT}. In

contrast, the muted tropospheric warming in UAH leads to

R{WV/TLT} and R{WV/TMT} values that are significantly larger

than model expectations, thus leading to large UAH Z-scores

for these two ratios. Based on R{WV/TLT} and R{WV/TMT} alone,

therefore, we might infer that the smaller tropical tropospheric

warming trend is UAH is less credible.

This inference assumes that the observed trend in tropical

WV is accurate. A substantially smaller observed WV trend

would decrease the UAH-derived R{WV/TLT} and R{WV/TMT}

ratios, bringing them in closer agreement with model expec-

tations. Since we do not have estimates of the observed WV

trend from multiple research groups, it is difficult to assess the

likelihood that the true (but uncertain) real-world WV trend is

markedly smaller than the RSS WV trend estimate.

By considering the R{TMT/SST} ratio, however, we can bring

in independently monitored observed SST data. This allows

us to explore the constraint that observed SST trends impose

on the size of observed TMT trends. All four observed

SST datasets, when considered in combination with the

UAH TMT trend, lead to UAH-based R{TMT/SST} ratios that

are significantly smaller than climate model expectations

(Fig. 10d).14

In summary, the reduced tropical tropospheric warming in

UAH is not supported by 1) an independent estimate of at-

mospheric moistening from satellite data, 2) all independent

estimates of observed sea surface warming, or 3) all model

expectations of R{WV/TLT}, R{WV/TMT}, and R{TMT/SST}.

The above analysis focused on comparing simulated and

observedmeasures of tropical covariability. It is also of interest

to compare modeled and observed values of the individual

components of these covariability metrics. In the case of WV,

FIG. 11. Normalized differences (Z-scores) between observed

scaling ratios and the mean of model scaling ratio distributions.

(a) Results for tests of R{WV/TLT} ratios based on five different

satellite TLT datasets and for tests of R{WV/TMT} and R{TMT/SST}

ratios based on six different satellite TMT datasets. (b) Results

involving tests of R{WV/SST} and R{TMT/SST} with four different ob-

served SST datasets. (c) Z-scores relying on tests performed with

observed trend ratios computed using reanalysis data. All Z-scores

were calculated using the scaling ratio data in Fig. 10. For each ratio

tested, the observed ratio is subtracted from the mean of the

CMIP5 or CMIP6 sampling distribution of the ratio. These dif-

ferences are normalized by the CMIP5 or CMIP6 standard devia-

tion of the ratio’s sampling distribution; CMIP5 and CMIP6

Z-scores are then averaged. For theR{TMT/SST} ratios in (a), there is

an additional averaging step: each satellite TMT trend can be

paired with four different observed SST trends, yielding four dif-

ferentZ-scores (see rows in Fig. 10d).We average these four values

per TMT dataset. Likewise, each observed SST trend in (b) can be

paired with 5 different satellite TMT trends, yielding five different

values of R{TMT/SST} (see columns in Fig. 10d). We average these

five values per SST dataset. The brown bars are average Z-scores

for different types of scaling ratio. Observed ratios to the left of the

dashed purple are within two standard deviations of the model

trend ratio sampling distributions.

13 In our analysis of ERA5.1 data, we do not ‘‘pair’’ ERA5.1

temperature or moisture trends with trends in other datasets; we

consider only the internal and physical consistency of temperature

and moisture trends within the reanalysis.
14 All four UAH-based R{TMT/SST} ratios are outside of the 5th–

95th percentile range of model results.
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21% of the WV trends over 1988–2019 in the 289 CMIP5 and

CMIP6 extended HIST simulations are smaller than the

satellite-estimated WV trend in Fig. 9a. For SST, TLT, and

TMT trends over the same period, only 17%, 12%, and 12% of

the model results are smaller than the largest observed trend

(Figs. 9a–c, respectively).

There are multiple interpretations of this finding. One in-

terpretation is that the higher level of consistency between

simulated and observed tropical WV trends reflects a system-

atic low bias in observed tropical TLT and TMT trends over

1988–2019. An alternative explanation is that the satellite WV

trend is overestimated. It is difficult to discriminate between

these two possibilities without additional information, such as

well-quantified estimates of uncertainties in observed WV

trends from different research groups.

One interesting feature of Fig. 9 relates to the behavior of

the ERA5.1. As noted above, the CMIP models show tight

coupling between themultidecadal trends in tropicalWV, SST,

and tropospheric temperature. In contrast, the agreement be-

tween theCMIP expectations and reanalysis-based trend ratios

is noticeably better for R{WV/SST} than for either R{WV/TLT} or

R{WV/TMT} (cf. the relative distances from the regression lines

of the purple pentagonal symbols in Figs. 9a–c). This closer

agreement is reflected in the lower Z-score for the ERA5.1-

based R{WV/SST} ratio in Fig. 11c. Our results imply that some

aspect or aspects of the assimilation system or assimilated data

(Hersbach et al. 2020) may be affecting the internal and

physical consistency of tropical temperature and moisture

trends in the reanalysis.

7. Conclusions

Relative to CMIP5, the more recent CMIP6 models have

higher resolution (on average), more complete numerical

portrayal of Earth’s climate system, and nominally improved

representation of external forcings (Eyring et al. 2016). These

advances do not guarantee improved agreement between

simulations and observations. This is apparent in at least two

aspects of model performance analyzed here: lower-stratospheric

cooling over the ozone depletion period and the stratospheric

temperature response to the El Chichón eruption. Understanding

why these features aremore accurately represented inCMIP5will

require more systematic diagnostic efforts to disentangle evolu-

tionary changes in models from evolutionary changes in model

forcings (Fyfe et al. 2021).

The development of satellite temperature datasets remains a

work in progress. Adjustments for known nonclimatic factors

can have significant impact on observed trends in tropospheric

temperature, as well as on basic physical properties related to

tropospheric warming (Karl et al. 2006; Mears et al. 2011;

Mears and Wentz 2016, 2017; Zou and Qian 2016; Zou et al.

2018; Spencer et al. 2017; Po-Chedley et al. 2015). Multimodel

and single-model large ensembles tightly constrain four such

physical properties: the ratio between tropical trends in WV

and SST, WV and TLT, WV and TMT, and TMT and SST.

These are denoted here by R{WV/SST}, R{WV/TLT}, R{WV/TMT},

and R{TMT/SST}, respectively. Comparing modeled and ob-

served values of such basic covariance relationships has the

advantage (relative to single-variable comparisons) that results

are less sensitive to model-versus-observed differences in the

phasing of internal variability (Santer et al. 2005; Po-Chedley

et al. 2021).

We find significant differences between simulated and

observed values of all trend ratios involving water vapor and

tropospheric temperature. Observed ratios exceed model

expectations in most cases (Figs. 10a–c). Observed datasets

with larger warming of the tropical ocean surface and

tropical troposphere yield ratios of R{WV/SST}, R{WV/TLT},

and R{WV/TMT} that are closer to model results. Ratios be-

tween moisture and temperature changes calculated with

the UAH and HadISST datasets, which both have muted

tropical warming over 1988–2019, are at least 10 standard

deviations removed from model expectations (Fig. 11).15

For R{TMT/SST}, model–data consistency depends on the se-

lected combination of observed datasets used to estimate

TMT and SST trends (Fig. 10d).

One interpretation of our findings is that they are due to a

systematic low bias in satellite tropospheric temperature

trends; that is, the size of the observed tropical moistening

signal is greater than can be explained by the independently

observed warming of the tropical troposphere. Alternately,

the observed atmospheric moistening signal may be over-

estimated. Given the large structural uncertainties in observed

tropical TMT and SST trends, and because satellite WV data

are available from one group only, it is difficult to determine

which interpretation is more credible.

What we can say with confidence, however, is that decisions

regarding how to merge MSU and AMSU TMT data have

substantial impact on observed tropical TMT trends. This is

evident from the three RSS sensitivity tests examined here

(Mears and Wentz 2016). These sensitivity tests point toward

merging decisions as a significant contributory factor to un-

certainties in observed R{WV/TMT} and R{TMT/SST} trend ratios

(Figs. 10c,d).

Three further points are relevant to the question of whether

the model–observed differences in Figs. 10a–c are mainly due

to underestimated observed tropospheric temperature trends

or to an overestimated satellite WV trend. First, independent

estimates of tropospheric temperature change from GPS ra-

dio occultation (RO) and radiosondes suggest that over the

2002–18 period of overlap between MSU/AMSU and GPS-

RO, tropospheric warming is smaller in microwave sounders

than in GPS-RO or radiosondes (Steiner et al. 2020). Second,

there is some evidence that observational uncertainties may

be smaller in satellite WV data than in satellite tropospheric

temperature data (Wentz 2013; see section 2c). Third, when

15 To bring the UAH-derived value ofR{WV/TMT} into agreement

with the regression slope of ;5.4% 8C21 estimated from Fig. 9c

would require that the RSS WV trend of 1.46% decade21 was

roughly a factor of 2 smaller. Such an error is well outside the WV

trend uncertainty assessed by RSS (Mears et al. 2018). An error

by a factor of;2 in the observedWV trend would also be required

to obtain agreement between the HadISST-derived value of R{WV/

SST} and the regression slope of ;8.6% 8C21 in Fig. 9a.
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the individual trend components of our four trend ratios are

examined, the agreement betweenmodels and observations is

better for WV and SST trends than for TMT or TLT trends.

These three lines of evidence, taken together with the results of

the RSS sensitivity tests, suggest that underestimated observed

tropospheric warming is plausible. This inference is predicated on

the assumption that the model-based covariance constraints are

realistic.

While our analysis does not definitively resolve the cause or

causes of significant differences between modeled and observed

tropospheric warming trends, it does illustrate the diagnostic

power of simultaneously considering multiple complementary

variables (Wentz and Schabel 2000). Our study also highlights

the strong internal and physical consistency between the model

constraints derived from multidecadal tropical trends in WV,

TMT, and SST. Examining additional independently monitored

constraints may be helpful in reducing the currently large un-

certainties in observations of tropical climate change.
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APPENDIX A

Calculation of Synthetic Satellite Temperatures from
Model Data

We use a local weighting function method developed at RSS

to calculate synthetic satellite temperatures from CMIP5 and

CMIP6 output and from the ERA5.1 reanalysis (Santer et al.

2017b). At each grid point, simulated temperature profiles

were convolved with local weighting functions. The weights

depend on the grid-point surface pressure, the surface type

(land, ocean, or sea ice), and the selected layer-average tem-

perature (TLS, TMT, or TLT). The local weighting function

method provides more accurate estimates of synthetic satellite

temperatures than use of a global-mean weighting function,

particularly over high-elevation regions.

APPENDIX B

Method Used for Correcting TMT Data

Trends in TMT estimated frommicrowave sounders receive a

substantial contribution from the cooling of the lower strato-

sphere (Fu et al. 2004; Fu and Johanson 2004, 2005; Johanson

and Fu 2006). In Fu et al. (2004), a regression-basedmethod was

developed for removing the bulk of this stratospheric cooling

component of TMT. This method has been validated with both

observed and model atmospheric temperature data (Fu and

Johanson 2004; Gillett et al. 2004; Kiehl et al. 2005). We cal-

culated two different versions of corrected TMT, the first with

latitudinally fixed and the second with latitudinally varying

regression coefficients. We refer to these subsequently as

TMT1 and TMT2, respectively. The main text discusses cor-

rected TMT1 only, and does not use the subscript 1 to identify

corrected TMT.

The regression equation applied in Fu and Johanson (2005)

for calculating corrected TMT is

TMT5 a
24
TMT1 (12 a

24
)TLS. (B1)

For TMT1, we use a24 5 1.1 at each latitude. For TMT2, a24 5
1.1 between 308N and 308S, and a24 5 1.2 poleward of 308. This
is consistent with how we have calculated TMT1 and TMT2 in

previous work (Santer et al. 2017b).

The advantage of TMT2 is that lower-stratospheric cooling

makes a larger contribution to TMT trends at mid- to high

latitudes. The latitudinally varying regression coefficients in

TMT2 remove more of this extratropical cooling. We prefer to

use the more conservative TMT1 here. In practice, the choice

of TMT1 or TMT2 has minimal influence on the statistical

significance of differences between the modeled and observed

statistics of interest here (temperature trends and a regression-

based measure of the amplification of warming with increasing

height in the tropical atmosphere).
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